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FOREWORD

This report was prepared for the Fluid Dynamics Research
Branch, Aeronautical Research Laboratory, Directorate of Research,
Wright Air Development Center by Philip Levine, 1st Lt., USAF,
under Task 70151, Project 3066, "Boundary Layer Effects on
Compressor Cascades".

The author gratefully acknowledges the helpful discussions with
Dr. Hans von Ohain in editing the manuscript. Credit is also due to
Mrs. Geraldine K. Campbell for her excellent typing of the report.
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ABSTRACT

Results are presented on an analytical study of the flow field
existing upstream of a blade row, where the axial flow is subsonic
and the relative flow is supersonic. The flow model used as a
basis for the calculations, assumes isentropic flow, and considers
the case where the suction surface is a circular arc in the entrance
region.

The results clearly show the unique dependence of the flow
through a blade row upon the geometry of the entrance region. Using
the results, the complete flow field in the entrance region and up-
stream of the blade row can be easily constructed.
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LIST OF SYMBOLS

A - area normal to the flow direction

A - critical area normal to the flow direction

e - point on the suction surface marking the end of the entrance region

L - leading edge

M - Mach number

R - radius of curvature of the suction surface in the entrance region

S - blade spacing

00 - point on the suction surface where the Mach number and direction of
the flow are the same as the relative undisturbed flow quantities.

pt - angle formed by the tangent to the suction surface at the leading edge
with the plane of the blade row.

AGO - angle formed between the direction of the relative undisturbed flow
and the plane of the blade row.

0 - angular measurement along the suction surface taken from the leading
edge

L - Mach angle

SUBSCRIPTS

L - conditions at the leading edge

00 - conditions of the undisturbed flow and at the point (ac) on the suction
surface

e - conditions at the point (e) on the suction surface
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INTRODUCTION

A distinguishing characteristic of supersonic compressors,
having subsonic axial flow, is the unique dependence of the corrected
weight flow on the corrected rotor speed. This characteristic has
been discussed in Reference 1, where it is indicated that the axial
velocity is controlled by waves generated at the entrance region of
the blades.

The complete construction of the inlet flow field for blading with
straight suction surfaces was shown (Ref. 1) to be relatively simple,
as compared to that for curved blades. Since there is considerable
interest in curved blades for supersonic compressors, it was deemed
worthwhile to investigate the possibility of finding a direct method for
calculating the flow field in the entrance region of curved blades. As
a result of this investigation, a relatively simple solution was found,
based on the premise that the suction surface in the entrance region is
a circular arc and on the assumptions that the flow about the suction
surface in the entrance region isentropic.

NOTE: This technical report was released for publication in
December 1955.
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PART I - DESCRIPTION OF THE FLOW FIELD

THE FLOW MODEL

The problem under consideration, is the determination of the
flow field established upstream of an annular cascade or rotor under
the conditions that the undisturbed flow relative to the blades is super-
sonic and that the axial flow is subsonic and steady.

It is assumed that the annular cascade or rotor is nearly two
dimensional (i. e., high hub ratio) and can be represented by an
equivalent infinite two-dimensional cascade. Thus, hereafter, (for
convenience) an annular cascade, rotor or infinite cascade are re-
ferred to simply as a blade row.

The geometry of a typical blade row and the associated notation
to which reference will be made in the text is shown in Figure 1. The
axis of the blade row is normal to the plane of the blade row. The
geometry of the blade row is fixed by the blade spacing S, the radius of
curvature R, of the portion of the suction surface which lies in the
entrance region, (entrance region will be defined later) and the angle
(pt) made by the tangent to the suction surface with the plane of the
blade row at the leading edge. The suction surface, as used here, is
defined as that surface whose tangent at the leading edge forms the
smallest angle with the plane of the blade row. Points on the suction
surface will be located by the angle ( 0), measured from the leading edge.

The flow upstream, free of disturbances arising as a result of the

blade row being in the flow is referred to as the undisturbed flow. The
undisturbed flow is taken to be uniform (i. e. , one-dimensional).

LIMITING CASE: SONIC AXIAL FLOW

To start the study of a flow into a blade row, it may be well to con-
sider the relatively simple limiting case, where the axial Mach number
of the undisturbed flow is supersonic but arbitrarily close to unity. For
this special case, the flow immediately ahead of the blade row is dis-
turbance free, due to the fundamental character of the sonic flow which
does not permit disturbances to travel upstream. Therefore, for steady
flow, the wave system generated by the blade row lies inside the blade
passages.
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For this case, the angle ( that the relative inlet flow makes

with the plane of the blade row as shown in Figure 2, is all that is
needed to describe the flow field ahead of the blade row. Three possi-
bilities exist for the value of (P); (1) = Ot ; (2) P. < Pt ; (3) P.. > pt

The first possibility sets the relative inlet Mach number as tangent to
the suction surface at the leading edge, forming a Mach wave with Mach
angle (R), as shown in Figure Z (a), where one observes that

1
Moo sinpt

but by definition,
1

M sin 1

Therefore jL = Pt and the Mach wave formed at the leading edge of one

blade, strikes the leading edge of the adjacent blade, so that no contra-
dictions exist and steady flow is possible. The second possibility, where
p.. <P t is shown in Figure Z(b), where the relative inlet Mach number

strikes the leading edge of the suction surface with a positive incidence
angle. Here, an expansion starts at the leading edge, and one observes
from Figure Z(a), that

I 1

= sin .- sin R.

Thus, the first characteristic of the expansion wave formed at the leading
edge just strikes the leading edge of the adjacent blade, so that no contra-
dictions exist and steady flow is possible. The third possibility where
P > Pt is shown in Figure 2(c) where the relative inlet flow strikes the

leading edge of the suction surface with a negative incidence angle. Here,
an oblique shock is formed at the leading edge. If a Mach wave were
formed, then by a similar argument as above, it would strike the leading
edge of the adjacent blade. But the wave angle of an oblique shock is
greater than the corresponding Mach angle, so that the shock would extend
upstream of the leading edge, violating the condition of steady sonic flow.
Hence the third possibility cannot exist. Thus, when the inlet angle is
increased such that P., > Pt . transient waves move upstream to reduce

the mass flow. The resultant axial Mach number must be subsonic for
if it were supersonic the incidence angle would be further decreased
which would only aggravate the incompatibility that established the
transient waves in the first place.
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The result of the above analysis indicates that the smallest value
the relative inlet Mach number may have for a given blade row geome-
try and still support steady sonic axial flow occurs when P = Pt and

1 1
M -n . Reducing the relative inlet Mach number below

00 il sin ;LnPt

causes a readjustment of the flow resulting in a subsonic axial Mach
number.

GENERAL CASE: SUBSONIC AXIAL FLOW:

Continuing along the line of study initiated above, the construction
of the flow field resulting when steady subsonic axial flow is established
is then the next step.

It was shown above, that when the relative inlet Mach number is
reduced below 1 , an oblique shock (assumed to be attached for thes in Pt

present argument) is formed at the leading edge, as sho;vn in Figure 3(a).
From Figure 3(a), one observes, that an expansion fan is generated along
the suction surface immediately behind the shock. In Figure 3(b) the effect
of the shock and expansion, emanating from one blade, on the streamline
which just strikes the leading edge of the adjacent blade is shown. The
flow along the characteristic (e-L) has been turned through the angle (6 e)

from the direction at the leading edge by the expansion wave, so that the
incident angle of the flow on the leading edge of the adjacent blade is the
angle (0 e), giving rise to another oblique shock on the adjacent blade.

Continuing in this manner, one finds that an oblique shock followed by an
expansion exists for each blade, as shown in Figure 4. One observes
from Figure 4, that expansion waves strike the shock wave from both
sides, forming a rather complex wave. A small part of an expansion
wave striking a shock is reflected; however in these considerations,
these reflections are neglected, introducing a small error when strong
shocks are present.

To establish steady flow for the desired value of the undisturbed
relative Mach number, M 0 , the net strength of the shocks and expansion
waves extending upstream must cancel, for if a disturbance of finite
strength travels upstream, the mass flow will change violating the con-
dition of steady flow. For a uniform row of blades, the portion of the
wave system arising from each blade will be the same, so that the net
strength of the disturbances arising from each blade which travel
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upstream, must be zero. Now, the point (e) on the suction surface is
defined such that the characteristic generated there is just intercepted
by the leading edge of the adjacent blade. Hence, the portion of the
expansion fan downstream of the point (e) is enclosed between the blades,
along with the wave system arising from the pressure surface of the
blades. Consequently, in accordance with Figure 4, only that portion of
the blading and hence of the expansion fan in the region bounded by the
pointo (LeL) (hereafter designated as the entrance region) has any influ-
ence on the inlet flow pattern. This of course excludes special consider-
ations such as starting due to a throat in the blade passage, and presumes
that the leading edge is a point so that regardless of the location of the
point (e), the characteristic emanating there will always be intercepted
al the exact leading edge (point (L) in Figure 4) of the adjacent blade.

From the above analysis of the wave system, it is apparent that
only waves of one family, (generated by the suction surfaces) exist up-
stream of the characteristic (e-L). Thus, the flow in the entrance region
is a Prandtl-Meyer expansion. To relate the flow quantities along the
characteristic (e-L) to the condition at infinity, one can now utilize conti-
uity and the relation for a Prandtl-Meyer expansion.

Prescribing the location of the point (e) relative to (L), and the slope
of the suction surface at (e), determines the Mach number of the flow and
the flow direction there. Consequently, the mass flow into the blade
channel is fixed, once point (e) and the slope of the suction surface at that
point are defined. By continuity, and the relation for a Prandtl-Meyer
expansion, one has two equations at his disposal to relate the Mach number
and direction of the flow at infinity (far upstream) to the flow quantities
along the characteristic (e-L).

The approach could be reversed, so that one could specify the flow
conditions at infinity, and then determine the location of (e) relative to (L),
and the slope of the suction surface at (e),

It should be emphasized, that no special shape has been attributed to
the suction surface as yet, but merely the relative location of the points
(e) and (L) and the slope of the suction surface at (e).

For the case of a rotor, it is now apparent, that changing the wheel
speed, changes the direction of the flow relative to the blades, so that
transient waves are sent upstream to adjust the axial Mach number (hence
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mass flow) in accordance with the steady flow and continuity requirements
discussed above. The ability of transient waves to travel upstream stems
from the fact that the axial Mach number is subsonic. Thus, for a fixed
geometry, each rotor speed will correspond to a particular mass flow.

PART II - ANALYTICAL METHOD

The conditions which connect the flow field far upstream of the cas-
cade to the flow field along the characteristic (e-L) can be formulated as
follows:

1. Continuity- The mass flow entering a blade passage (i. e. ,
crossing e-L) equals the mass flow passing through a cross-section of
length S at infinity.

2. The waves originating from the suction surface in the entrance
region are of only one family, (i. e., Prandtl-Meyer expansion).

The flow conditions along the characteristic (e-L) are related'to the
upstream undisturbed flow, by the continuity equation and the geometry
of Figure 6, such that,

S M l+ [RY-)/Z]M V+l

-A' sin (pt+ 0® - { } 2 (Y-1 )
moo 1+ [(/- ) /2]M2 (1)

M 1+ Y+l

where 00 l+[(1)/Z]MZ = A AeI1+ [(-I) /2] A e

The angles (0) and (0e) are connected by the Prandtl-Meyer relationship,
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o = 0 + Va -V00 e e

where (2)

V - Ta 1 - Tan '4

Consequently, (0.) may be eliminated from equation 1, so that

A sin(P +  v, _e= _!e  2+(t1)Z~ (,-1)
e + [(-l)/]M

(3)

Now equation 3, represents a general relationship between the
Mach number (Me) along the characteristic (e-L) and the undisturbed

relative flow Mach number (M.,), and is not restricted to any particular
shape of the suction surface between the points (e) and (L). By specifying
the location of the point (e) and the slope of the suction surface there
(which in equation 3 amounts to specifying Ae and 0e) then the Mach

numbers (Me) and (M.) are directly related by the blade geometry parame-

ters (S,pt).

SOLUTION FOR A CONVEX SUCTION SURFACE

Specifying the shape of the suction surface from (L) to (e), permits

one to relate (S) and (Ae) through the angles (Pt' Oe' le)" For the special

case of a convex circular are from (L) to (e), the following relationships
can be derived from Figure 6.

A
- sin ( e - 0e R[cos t -cos (Pt + 6e)] (4)
sin Ite
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AeA cOs 4Le - t - Oe) = S-R [sin (Pt + Oe) - sin Pt] (5)sin 1e

Combining equations 4 and 5 and solving for = f(Fe Pt, Oe) and
1

introducing sin Ile - M yields,

Ae

Ae cosPt - cos(Pt+ 0 e) (6)S sin~e _(1.cos 0e)N=e 1  6
ie

Eliminating( A..) by combining equations 3 and 6 yields

IS
fl~

M cos vo[Tan(Pt + e-V e ) + TanvO]

(I (V-)/ZM ) Z 1')cosPt+Oe -Ye)[sin 0e-(G -cos 0d rL _ 2

Me[cos Pt cos (Pt+ Oe) ]
(7)

Equation 7 relates M o = (At ' Me 0 e)' with the terms on the right

hand side known as a result of specifying the location of (e) relative to (L)
and the slope at (e).

It is of practical interest, to relate M = fs (S / R, Pt' 0 e)' which can

be done by combining equations 4 and 5, eliminating (Ae) and solving for
(Me),

M + S/R coo (At + Oe) - sin Oe  2

Me = R +[S/sin(Pt +Ge)-l+cos8e (8)

WVADCTR55-387 8



Substituting equation (8) into (7) yields M., (SIR, Ot, 8e). The use of

(M.) as the dependent variable in several relationships above, may be
taken as part of the result, t hat (M.,) is dependent on the geometry of
the blade row, and the location of the point (e). However, it is more
convenient to display the calculated values of the above relationships in
charts with (M.) as a curve parameter. These charts are located at the
end of the text.

SOLUTION FOR A CONCAVE SUCTION SURFACE

The solution for the concave suction surface is identical with the
convex solution, as a reversed Prandtl-Meyer flow occurs along the
surface (L) to (e) as shown in Figure 7. Care must be taken to observe
the sign on the angles (0e) and (8.,). For the convex solution these were
taken as positive angles, while for the concave solution they should be
taken as negative. This follows from the reversed nature of the flow.

Thus, equations 1 to 8 are valid for this case provided that (0 e , 0.)

are replaced by (-Oe) and (-0.,) respectively wherever they occur.

PART III - DISCUSSION OF RESULTS AND CONCLUSIONS

The calculated results are shown in the charts for values of 150 _t
_s 400 (taken in 50 increments) located at the rear of the text. The

abcissa of each chart, is the ratio (S/R), where (R) is the radius of the
suction surface in the entrance region. Thus, fixing (8t) and (S/R)
satisfies all the geometrical conditions. The ordinate is (Me), which
is the local Mach number occurring along the expansion ray (e-L),
(See Fig. 6). The lines labeled (0e) locate the point (e) on the blade in

degrees measured from the leading edge. The lines labeled (M..) are

values of the undisturbed relative Mach number. Any point on the chart
satisfies both families of curves.

In addition to what is presented in the charts, a large amount of
information can be readily found by using the charts in combination with
Prandtl-Meyer tables.

DISCUSSION OF RESULTS

Practically, it is of interest to determine the variation of the Mach
number from (L) to (e). It may be noted at this point, that
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the Mach number and flow along the characteristic (e-L) N* C-a._I0i,
fbe the undisturbed value (M..). However, such a condition leads to
a contradiction in applying the continuity relationship. This may be
seen from Figure 5, where one observes that the streamlines of the
undisturbed relative inlet flow, containing the flow which must pass
through each blade passage are spaced at a distance (S). By continuity,
if the flow along the ray (e-L) has the same Mach number and direction
as the relative undisturbed Mach number and direction, then the stream-
line spacing must also be (S). That this is not so, is apparent from
Figure 5 where the spacing of the streamlines (Se). along the character-
istic (e-L) is clearly shorter than the distance (S). Hence continuity
cannot be satisfied and the undisturbed flow conditions cannot exist along
(e-L). To satisfy the condition that the net strength of the wave system
extending upstream is zero, the expansions striking each shock must be
of just sufficient strength to eventually cancel the shock. From Figure 4,
it therefore appears that the extended wave system consists of repeated
wave patterns, which begin with a characteristic emanating at the point
(co) on one blade and end with a characteristic emanating from the point
(oo) on the adjacent blade. The nature of these wave patterns is such
that no net effect is produced on the flow since the characteristics
emanating from the points (w) mark the beginning and the end of success-
ive wave patterns, the undisturbed Mach number must exist in both
direction and magnitude along these characteristics. The characteristics
emanating from the points (o) on the suction surfaces form parallel
boundaries for the wave patterns, and extend upstream to infinity as Mach
number. Downstream of the point (co) the flow continues to expand (See
Figure 4) so that it enters the blade row in an over-expanded state. The
area normal to the streamlines must increase as the Mach number
increases (supersonic) to satisfy continuity. Due to the small change of
area which is necessary to satisfy this condition in the Mach number
range under consideration (approximately (1:5 Moo < 1. 7), it is difficult

to see the necessary area change from a geometric construction alone.

The position of the point (co) on the blade where the Mach number and
direction of the flow return to the relative undisturbed condition can be
located in terms of the angle (0.) by using a Prandtl-Meyer table and the
appropriate chart. This follows, as by the Prandtl-Meyer relationships,

WADC TR 55-387 10
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0 0 =e + Voo Ve

where

v = 1Tan Tan-lN4-1

The values of (v) corresponding to (M.o) and (Me) are available in

tables. This gives the direction of the undisturbed relative Mach
number direction immediately. Similarly, one can find the Mach
number at the leading edge (if supersonic), as

V =V -0L e e

Note that this gives the Mach number behind the shock. In case the
Mach number at the leading edge is subsonic, then one can locate the
point on the blade, defined by the angle, (0*), where the Mach number
equals one, as

= 0 e -Ve

In addition to the above information one can use a table or graph
defining the detachment of an oblique shock in terms of the Mach number
ahead of the shock and the wedge angle to determine when detachment
occurs in the present case. For the case considered here, the Mach
number ahead of the shock could be taken as (Me) (the Mach number of
the flow along the first characteristic to hit the leading edge) and the
wedge angle would be (0e).

Thus, using the charts and simple Prandtl-Meyer relationships,
one can relate a wide range of geometric parameters to the resultant
flow field, to find:

1. The incidence angle of the undisturbed relative flow
on the suction surface, (0.).

2. The point on the blade surface (oc) where the Mach
number and direction of the flow are the same as the
relative undisturbed conditions.

WADC TR 55-387 11
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3. The point on the blade, (e), where the flow just enters
the blade passage, marking the end of the entrance region.

4. Mach number of the flow along the blade surface in the
entrance region.

5. Conditions when the shock is detached.
S

A typical application of the results, would be for a blade row, where
a particular axial and relative Mach number are desired. To start a
design one could prescribe (M.), (Maxial) and (pt). With (M) and the

axial Mach number prescribed, and (Pt) given, (0..) is known immediately

as (M.) sin (Pt + 0..) = Maxial . Utilizing the appropriate chart for (pt),

the curve for (M.) defines the relationship of (S/R) to (0e) and (Me). By
satisfying the conditions of equation 2 one obtains the value of (S/R) which
satisfies the desired conditions.

A more direct application to a blade row design would be a case
where (Pt' S/R, M.) are prescribed. Then the direction of the relative,

Mach number (hence the axial Mach number and mass flow) follows
immediatel3 from the appropriate chart and equation 2.

CONCLUSIONS

The results indicate that the flow through a blade row with subsonic
axial flow and supersonic relative flow is uniquely defined by the geometry
of the entrance region of the blade row.

The influence of various geometric parameters describing the entrance
region can be seen from the charts of the calculated results. The following
conclusions may be drawn, for convex suction surfaces, from a study of
the charts.

1. The relative undisturbed Mach number always has a nega-

tive incidence angle on the suction surface, except at the limiting case of
sonic axial flow where the relative Mach number is just tangent to the
suction surface at the leading edge.

2. Decreasing the blade spacing reduces the amount of over-
expansion of the flow prior to entering the blade passage.

WADC TR 55-387 12
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3. Increasing the radius of curvature in the entrance
region has the same effect as decreasing the blade spacing.

4. Small values of ( Pt ) (implies low stagger angles)

increases the amount of over-expansion of the flow prior to entering

the blade passage.
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Plane of Blade Row

Figure 1. -Blade Row Geometry and Associated Notation
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Figure 4. -Steady Flow Wave System for Subsonic Axial Flow
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Figure 6. G eomtric Construiction for the Solution of the Flow Conditions
in the ~Itrance Region for a Convex Suction Surface
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Figure 7. - Geometric Construction for the Flow Conditions in the Entrance
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